Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f2(a, empty) -> g2(a, empty)
f2(a, cons2(x, k)) -> f2(cons2(x, a), k)
g2(empty, d) -> d
g2(cons2(x, k), d) -> g2(k, cons2(x, d))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
f2(a, empty) -> g2(a, empty)
f2(a, cons2(x, k)) -> f2(cons2(x, a), k)
g2(empty, d) -> d
g2(cons2(x, k), d) -> g2(k, cons2(x, d))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f2(a, empty) -> g2(a, empty)
f2(a, cons2(x, k)) -> f2(cons2(x, a), k)
g2(empty, d) -> d
g2(cons2(x, k), d) -> g2(k, cons2(x, d))
The set Q consists of the following terms:
f2(x0, empty)
f2(x0, cons2(x1, x2))
g2(empty, x0)
g2(cons2(x0, x1), x2)
Q DP problem:
The TRS P consists of the following rules:
G2(cons2(x, k), d) -> G2(k, cons2(x, d))
F2(a, empty) -> G2(a, empty)
F2(a, cons2(x, k)) -> F2(cons2(x, a), k)
The TRS R consists of the following rules:
f2(a, empty) -> g2(a, empty)
f2(a, cons2(x, k)) -> f2(cons2(x, a), k)
g2(empty, d) -> d
g2(cons2(x, k), d) -> g2(k, cons2(x, d))
The set Q consists of the following terms:
f2(x0, empty)
f2(x0, cons2(x1, x2))
g2(empty, x0)
g2(cons2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
G2(cons2(x, k), d) -> G2(k, cons2(x, d))
F2(a, empty) -> G2(a, empty)
F2(a, cons2(x, k)) -> F2(cons2(x, a), k)
The TRS R consists of the following rules:
f2(a, empty) -> g2(a, empty)
f2(a, cons2(x, k)) -> f2(cons2(x, a), k)
g2(empty, d) -> d
g2(cons2(x, k), d) -> g2(k, cons2(x, d))
The set Q consists of the following terms:
f2(x0, empty)
f2(x0, cons2(x1, x2))
g2(empty, x0)
g2(cons2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
G2(cons2(x, k), d) -> G2(k, cons2(x, d))
The TRS R consists of the following rules:
f2(a, empty) -> g2(a, empty)
f2(a, cons2(x, k)) -> f2(cons2(x, a), k)
g2(empty, d) -> d
g2(cons2(x, k), d) -> g2(k, cons2(x, d))
The set Q consists of the following terms:
f2(x0, empty)
f2(x0, cons2(x1, x2))
g2(empty, x0)
g2(cons2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
G2(cons2(x, k), d) -> G2(k, cons2(x, d))
Used argument filtering: G2(x1, x2) = x1
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f2(a, empty) -> g2(a, empty)
f2(a, cons2(x, k)) -> f2(cons2(x, a), k)
g2(empty, d) -> d
g2(cons2(x, k), d) -> g2(k, cons2(x, d))
The set Q consists of the following terms:
f2(x0, empty)
f2(x0, cons2(x1, x2))
g2(empty, x0)
g2(cons2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
F2(a, cons2(x, k)) -> F2(cons2(x, a), k)
The TRS R consists of the following rules:
f2(a, empty) -> g2(a, empty)
f2(a, cons2(x, k)) -> f2(cons2(x, a), k)
g2(empty, d) -> d
g2(cons2(x, k), d) -> g2(k, cons2(x, d))
The set Q consists of the following terms:
f2(x0, empty)
f2(x0, cons2(x1, x2))
g2(empty, x0)
g2(cons2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
F2(a, cons2(x, k)) -> F2(cons2(x, a), k)
Used argument filtering: F2(x1, x2) = x2
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f2(a, empty) -> g2(a, empty)
f2(a, cons2(x, k)) -> f2(cons2(x, a), k)
g2(empty, d) -> d
g2(cons2(x, k), d) -> g2(k, cons2(x, d))
The set Q consists of the following terms:
f2(x0, empty)
f2(x0, cons2(x1, x2))
g2(empty, x0)
g2(cons2(x0, x1), x2)
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.